Discontinuous and Enriched Galerkin Methods for Phase-Field Fracture Propagation in Elasticity

نویسندگان

  • Prashant Mital
  • Thomas Wick
  • Mary F. Wheeler
  • Gergina Pencheva
چکیده

In this work, we introduce discontinuous Galerkin and enriched Galerkin formulations for the spatial discretization of phase-field fracture propagation. The nonlinear coupled system is formulated in terms of the Euler-Lagrange equations, which are subject to a crack irreversibility condition. The resulting variational inequality is solved in a quasi-monolithic way in which the irreversibility condition is incorporated with the help of an augmented Lagrangian technique. The relaxed nonlinear system is treated with Newton's method. Numerical results complete the present study.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybridized Crouziex-Raviart Nonconforming Finite Element and Discontinuous Galerkin Method for a Two-Phase Flow in the Porous Media

In this study, we present a numerical solution for the two-phase incompressible flow in the porous media under isothermal condition using a hybrid of the linear lower-order nonconforming finite element and the interior penalty discontinuous Galerkin (DG) method. This hybridization is developed for the first time in the two-phase modeling and considered as the main novelty of this research.The p...

متن کامل

Multicomponent fluid flow by discontinuous Galerkin and mixed methods in unfractured and fractured media

[1] A discrete fracture model for the flow of compressible, multicomponent fluids in homogeneous, heterogeneous, and fractured media is presented in single phase. In the numerical model we combine the mixed finite element (MFE) and the discontinuous Galerkin (DG) methods. We use the cross-flow equilibrium concept to approximate the fractured matrix mass transfer. The discrete fracture model is ...

متن کامل

Wave Propagation in Rectangular Nanoplates Based on a New Strain Gradient Elasticity Theory with Considering in-Plane Magnetic Field

In this paper, on the basis of a new strain gradient elasticity theory, wave propagation in rectangular nanoplates by considering in-plane magnetic field is studied. This strain gradient theory has two gradient parameters and has the ability to compare with the nonlocal elasticity theory. From the best knowledge of author, it is the first time that this theory is used for investigating wave pro...

متن کامل

Element free Galerkin method for crack analysis of orthotropic plates

A new approach for analyzing cracked problems in 2D orthotropic materials using the well-known element free Galerkin method and orthotropic enrichment functions is proposed. The element free Galerkin method is a meshfree method which enables discontinuous problems to be modeled efficiently. In this study, element free Galerkin is extrinsically enriched by the recently developed crack-tip orthot...

متن کامل

Compositional Modeling of Discrete-Fractured Media Without Transfer Functions by the Discontinuous Galerkin and Mixed Methods

In a recent work, we introduced a numerical approach that combines the mixed-finite-element (MFE) and the discontinuous Galerkin (DG) methods for compositional modeling in homogeneous and heterogeneous porous media. In this work, we extend our numerical approach to 2D fractured media. We use the discrete-fracture model (crossflow equilibrium) to approximate the two-phase flow with mass transfer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015